skip to main content


Search for: All records

Creators/Authors contains: "Loeb, Abraham"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Recent observations and detections of interstellar objects (ISOs) passing through the Solar system have sparked a wave of interest into these objects. Although rare, these ISOs can be captured into bound orbits around the Sun. In this study, we investigate the novel idea of capture of ISOs into near-Earth orbits and find that a steady population of ISOs exists among the current population of near-Earth objects (NEOs). Using numerical simulations, we find that the capture of ISOs into near-Earth orbits is dominated by Jupiter that is 104 times more efficient in capturing ISOs compared to Earth. Captured ISOs are more likely to be in orbits with high eccentricities and low inclinations. We also investigate the stability of captured ISOs and find that they are generally unstable and have an average survival lifetime of ∼1 Myr, consistent with lifetime of NEOs originating from outer asteroid belt, and are ejected from the Solar system due to interactions with other planets or the Sun. Our results have important implications for understanding the population of ISOs in the Solar system and possible future detection. We find that about one to a few 50–70 m sized captured ISOs among NEOs would be detectable by Vera Rubin Observatory over its lifetime. By detecting and studying captured ISOs, we can learn about the properties and origins of such objects, and the formation and evolution of exoplanetary systems and even our Solar system.

     
    more » « less
  2. Abstract

    The idea of ultralight scalar (axion) dark matter is theoretically appealing and may resolve some small-scale problems of cold dark matter; so it deserves careful attention. In this work we carefully analyze tunneling of the scalar field in dwarf satellites due to the tidal gravitational force from the host halo. The tidal force is far from spherically symmetric; causing tunneling along the axis from the halo center to the dwarf, while confining in the orthogonal plane. We decompose the wave function into a spherical term plus higher harmonics, integrate out angles, and then numerically solve a residual radial Schrödinger-Poisson system. By demanding that the core of the Fornax dwarf halo can survive for at least the age of the universe places a bound on the dark matter particle mass 2 × 10-22eV ≲m≲ 6 × 10-22eV. Interestingly, we show that if another very low density halo is seen, then it rules out the ultralight scalar as core proposal completely. Furthermore, the non-condensed particles likely impose an even sharper lower bound. We also determine how the residual satellites could be distributed as a function of radius.

     
    more » « less
  3. ABSTRACT

    We use the ASTRID cosmological hydrodynamic simulation to investigate the properties and evolution of triple and quadruple massive black hole (MBH) systems at z = 2–3. Only a handful of MBH tuple systems have been detected to date. In ASTRID, we find 4 per cent of the $M_{\rm BH}\gt 10^7\, M_\odot$ are in tuples with $\Delta r_{\rm max} \lt 200\, {\rm kpc}$. The tuple systems span a range of separations with the majority of the observable AGN systems at Δr ∼ 50–100 kpc. They include some of the most massive BHs (up to $10^{10} \, M_\odot$) but with at least one of the components of $M_{\rm BH} \sim 10^7 \, {\rm M}_{\odot }$. Tuples’ host galaxies are typically massive with $M_* \sim 10^{10-11} \, M_\odot$. We find that $\gt 10~{{\ \rm per\ cent}}$ massive haloes with Mhalo > 1013 M⊙ host MBH tuples. Following the subsequent interactions between MBHs in tuples, we found that in $\sim 5~{{\ \rm per\ cent}}$ of the triplets all three MBHs merge within a Gyr, and 15 per cent go through one merger. As a by-product of the complex multigalaxy interaction of these systems, we also find that up to $\sim 5~{{\ \rm per\ cent}}$ of tuples lead to runaway MBHs. In ASTRID, virtually all of the ultramassive black holes ($\gt 10^{10} \, M_\odot$) have undergone a triple quasar phase, while for BHs with $M_{\rm BH} \sim 10^9 \, M_\odot$, this fraction drops to 50 per cent.

     
    more » « less
  4. Abstract

    We discuss the central role that dust condensation plays in shaping the observational appearance of outflows from coalescing binary systems. As binaries begin to coalesce, they shock-heat and expel material into their surroundings. Depending on the properties of the merging system, this material can expand to the point where molecules and dust form, dramatically increasing the gas opacity. We use the existing population of luminous red novae to constrain the thermodynamics of these ejecta, then apply our findings to the progressive obscuration of merging systems in the lead up to their coalescence. Compact progenitor stars near the main sequence or in the Hertzsprung gap along with massive progenitor stars have sufficiently hot circumstellar material to remain unobscured by dust. By contrast, more extended, low-mass giants should become completely optically obscured by dust formation in the circumbinary environment. We predict that 30%–50% of stellar-coalescence transients for solar-mass stars will be dusty, infrared-luminous sources. Of these, the optical transients may selectively trace complete merger outcomes while the infrared transients trace common envelope ejection outcomes.

     
    more » « less
  5. Abstract

    The evolution of many close binary and multiple star systems is defined by phases of mass exchange and interaction. As these systems evolve into contact, tidal dissipation is not always sufficient to bring them into circular, synchronous orbits. In these cases, encounters of increasing strength occur while the orbit remains eccentric. This paper focuses on the outcomes of close tidal passages in eccentric orbits. Close eccentric passages excite dynamical oscillations about the stars’ equilibrium configurations. These tidal oscillations arise from the transfer of orbital energy into oscillation mode energy. When these oscillations reach sufficient amplitude, they break near the stellar surface. The surface wave-breaking layer forms a shock-heated atmosphere that surrounds the object. The continuing oscillations in the star’s interior launch shocks that dissipate into the atmosphere, damping the tidal oscillations. We show that the rapid, nonlinear dissipation associated with the wave breaking of fundamental oscillation modes therefore comes with coupled mass loss to the wave-breaking atmosphere. The mass ratio is an important characteristic that defines the relative importance of mass loss and energy dissipation and therefore determines the fate of systems evolving under the influence of nonlinear dissipation. The outcome can be rapid tidal circularization (q≪ 1) or runaway mass exchange (q≫ 1).

     
    more » « less
  6. Abstract Repeated mergers of stellar-mass black holes in dense star clusters can produce intermediate-mass black holes (IMBHs). In particular, nuclear star clusters at the centers of galaxies have deep enough potential wells to retain most of the black hole (BH) merger products, in spite of the significant recoil kicks due to anisotropic emission of gravitational radiation. These events can be detected in gravitational waves, which represent an unprecedented opportunity to reveal IMBHs. In this paper, we analyze the statistical results of a wide range of numerical simulations, which encompass different cluster metallicities, initial BH seed masses, and initial BH spins, and we compute the merger rate of IMBH binaries. We find that merger rates are in the range 0.01–10 Gpc −3 yr −1 depending on IMBH masses. We also compute the number of multiband detections in ground-based and space-based observatories. Our model predicts that a few merger events per year should be detectable with LISA, DECIGO, Einstein Telescope (ET), and LIGO for IMBHs with masses ≲1000 M ⊙ , and a few tens of merger events per year with DECIGO, ET, and LIGO only. 
    more » « less
  7. ABSTRACT

    We analyse how drag forces modify the orbits of objects moving through extended gaseous distributions. We consider how hydrodynamic (surface area) drag forces and dynamical friction (gravitational) drag forces drive the evolution of orbital eccentricity. While hydrodynamic drag forces cause eccentric orbits to become more circular, dynamical friction drag can cause orbits to become more eccentric. We develop a semi-analytic model that accurately predicts these changes by comparing the total work and torque applied to the orbit at periapse and apoapse. We use a toy model of a radial power-law density profile, ρ ∝ r−γ, to determine that there is a critical γ = 3 power index, which separates the eccentricity evolution in dynamical friction: orbits become more eccentric for γ < 3 and circularize for γ > 3. We apply these findings to the infall of a Jupiter-like planet into the envelope of its host star. The hydrostatic envelopes of stars are defined by steep density gradients near the limb and shallower gradients in the interior. Under the influence of gaseous dynamical friction, an infalling object’s orbit will first decrease in eccentricity and then increase. The critical separation that delineates these regimes is predicted by the local density slope and is linearly dependent on polytropic index. More broadly, our findings indicate that binary systems may routinely emerge from common envelope phases with non-zero eccentricities that were excited by the dynamical friction forces that drove their orbital tightening.

     
    more » « less
  8. We discuss the central role that dust condensation plays in shaping the observational appearance of outflows from coalescing binary systems. As binaries enter into a common envelope phase or merger, they shock-heat and expel material into their surroundings. Depending on the properties of the merging system, this material can expand to the point where molecules and dust form, dramatically increasing the gas opacity. We use the existing population of Luminous Red Novae (LRNe) to constrain the thermodynamics of these ejecta, then apply our findings to the progressive obscuration of merging systems in the lead in to their coalescence. Compact progenitor stars near the main sequence or in the Hertzsprung gap along with massive progenitor stars have sufficiently hot circumstellar material to remain unobscured by dust. By contrast, more extended, low-mass giants should become completely optically obscured by dust formation in the circumbinary environment. We predict that approximately half of stellar merger and common envelope transients for solar-mass stars will be dusty, infrared-luminous sources. The dusty, infrared transients will selectively trace the population of systems that may successfully eject their common envelopes, while the unobscured, optical transients correspond to the LRNe population of stellar mergers. 
    more » « less
  9. ABSTRACT Tidal dissipation due to turbulent viscosity in the convective regions of giant stars plays an important role in shaping the orbits of pre-common-envelope systems. Such systems are possible sources of transients and close compact binary systems that will eventually merge and produce detectable gravitational wave signals. Most previous studies of the onset of common envelope episodes have focused on circular orbits and synchronously rotating donor stars under the assumption that tidal dissipation can quickly spin-up the primary and circularize the orbit before the binary reaches Roche lobe overflow (RLO). We test this assumption by coupling numerical models of the post-main-sequence stellar evolution of massive stars with the model for tidal dissipation in convective envelopes developed in Vick & Lai – a tidal model that is accurate even for highly eccentric orbits with small pericentre distances. We find that, in many cases, tidal dissipation does not circularize the orbit before RLO. For a $10\, {\rm M}_{\odot }$ ($15\, {\rm M}_{\odot }$) primary star interacting with a $1.4\, {\rm M}_{\odot }$ companion, systems with pericentre distances within 3 au (6 au) when the primary leaves the main sequence will retain the initial orbital eccentricity when the primary grows to the Roche radius. Even in systems that tidally circularize before RLO, the donor star may be rotating subsynchronously at the onset of mass transfer. Our results demonstrate that some possible precursors to double neutron star systems are likely eccentric at the Roche radius. The effects of pre-common-envelope eccentricity on the resulting compact binary merit further study. 
    more » « less